Relationship of the Units

- Basic unit, latch and F/F (unit 11)
- Simple sequential circuits (unit 12)
 - Registers
 - Counters
- Complex sequential circuits : FSM (finite state machine)
 - Simple one: analysis, Mealy & Moore (unit 13)
 - Complex one:
 - Derive state graph and tables (unit 14)
 - Reduce state graph and tables (unit 15)

Unit 14

Derivation of State Graph and Table

Outline

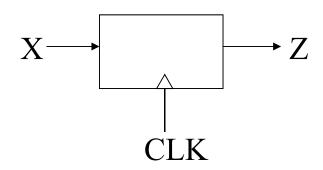
- Design of a sequence detector
- More complex design problems
- Guidelines for construction of state graphs
- Alphanumeric state graph notation

Sequential Circuit Design

- Given a problem statement, to design a sequential circuit
 - 1. Construct a state table or state graph (unit 14)
 - Further simplification (unit 15)
 - 2. Derive F/F input equations and output equations (unit 12)

Given problem statement ⇒ state graph state table

Mealy Machine

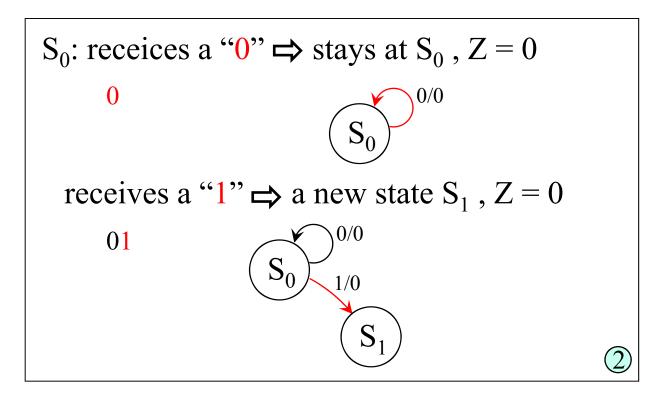


→ Z Z=1 when detects X=101, otherwise Z=0

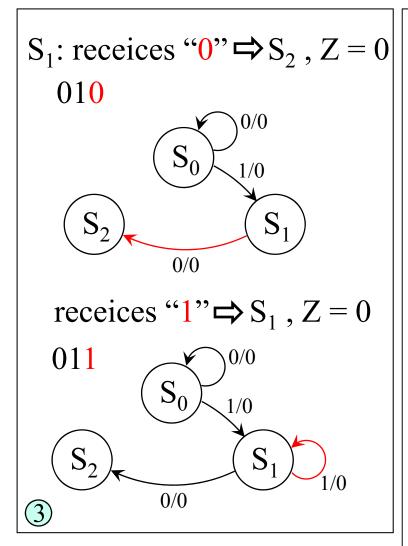
Design of a Sequence Detector (2/11)

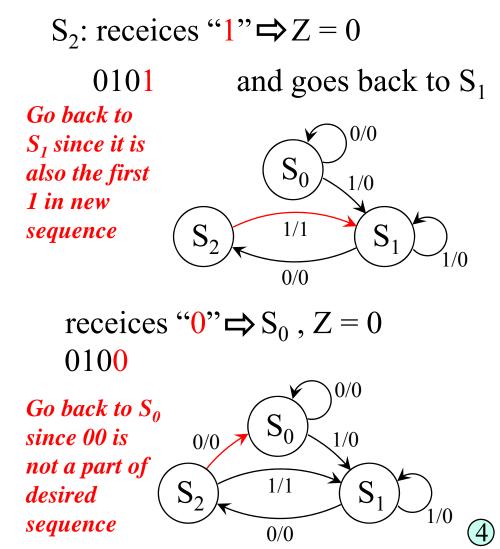
Construction of state graph

Start with a reset state S_0 S_0



Design of a Sequence Detector (3/11)



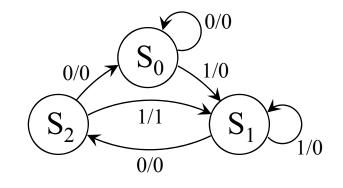


State table

	N.	Output Z			
P.S.	X = 0	X = 1	X = 0	X = 1	
\overline{S}_0	S_0	S_1	0	0	
S_1	S_2	\mathbf{S}_{1}	0	0	
S_2	S_0	S_1	0	1	

State assignment

A F/F can encode 2 states \Rightarrow 3 states \Rightarrow 2 F/Fs (A, B)



		/ X	$^{+}\mathrm{B}^{+}$,	Z
$S_0: AB = 00$	AB	X = 0	X = 1	X = 0	X = 1
$S_1: AB = 01$	00	00	01	0	0
S_2 : AB = 10	01	10	01	0	0
2	10	00	01	0	1

Design of a Sequence Detector (5/11)

Choose F/F

Use D F/F

AB	A^+		\mathbf{D}_{A}	1	D_{B}		
	X = 0	X = 1	X = 0	X = 1	X = 0	X = 1	
00	0 0	0 1	0	0	0	1	
01	1 0	0 1	1	0	0	1	
10	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0 1	0	0	0	1	

K-Map simplification

$$\begin{array}{c|cccc}
 & X & 0 & 1 \\
 & 00 & 0 & 0 \\
 & 01 & 1 & 0 \\
 & 11 & \times & \times \\
 & 10 & 0 & 0
\end{array}$$

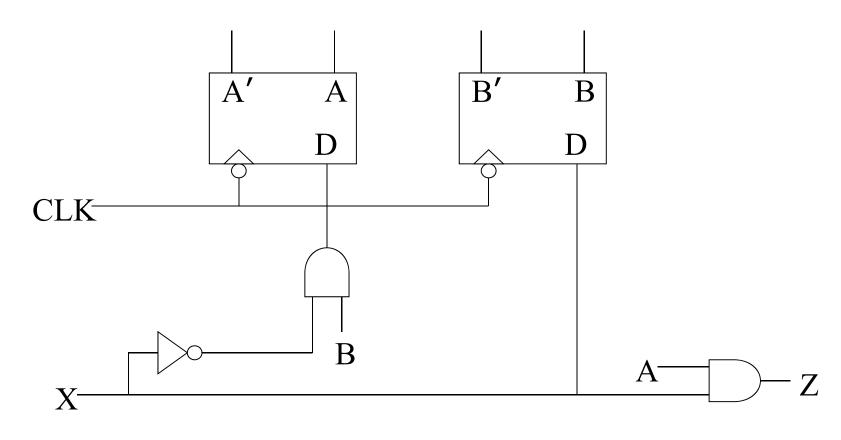
$$A^+ = D_A = X'B$$

$$B_+ = D^B = X$$

$$Z = XA$$

Design of a Sequence Detector (6/11)

Circuit realization



$$A^+ = D_A = X'B$$
 $B^+ = D_B = X$ $Z = XA$

$$\mathbf{B}^+ = D_{\scriptscriptstyle R} = \mathbf{X}$$

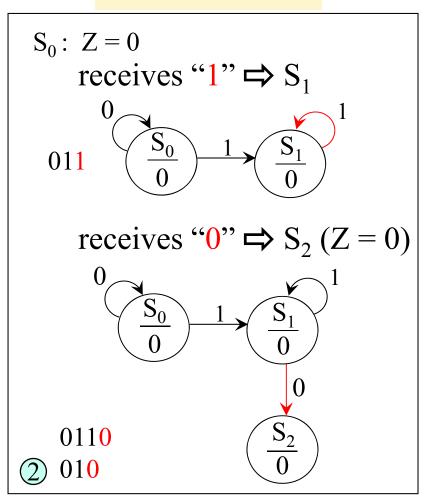
$$Z = XA$$

Design of a Sequence Detector (7/11)

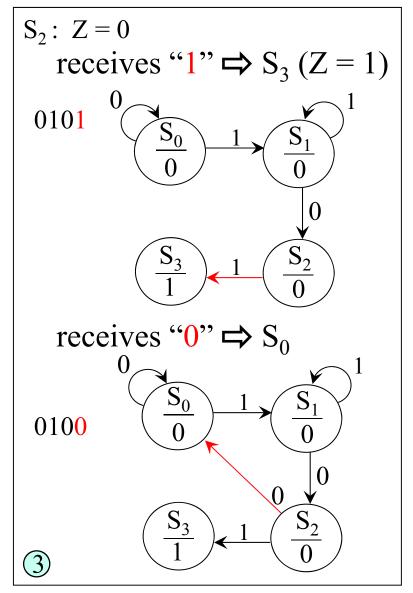
Construction of state graph

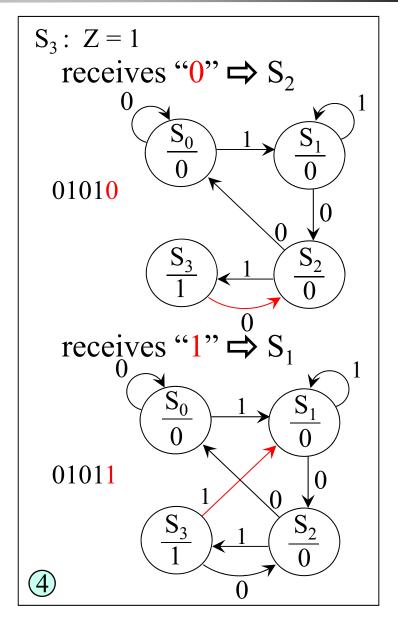
Start with a reset state S_0 $S_0: Z = 0$ receives "0" \Rightarrow S₀ receives "1" \Rightarrow S₁ (S₁, Z = 0) 01

Moore Machine



Design of a Sequence Detector (8/11)



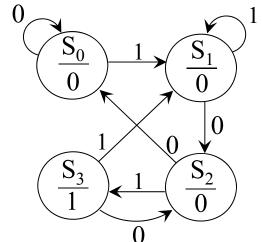


State table

N.S.

Present Output

[¬] P.S.	X = 0	X = 1	
\overline{S}_0	S_{0}	S 1	0
S_{1}	S_{2}	\mathbf{S}_{-1}	0
S_{2}	S_{0}	S_{3}	0
S_{3}	\mathbf{S}_{2}	S_{1}	1



State assignment

4 states \Rightarrow 2 F/Fs (A, B)

	$\mathbf{A}^{T}\mathbf{B}^{T}$					
	AB	X = 0	X = 1			
$\overline{S_0}$	00	00	01	0		
S_{1}	01	11	01	0		
S_{2}	11	00	10	0		
S_{3}	10	11	01	1		

 $\Lambda + D +$

Design of a Sequence Detector (10/11)

Choose F/F

Use D F/F

	$\mathrm{A^{+}B^{+}}$			\mathbf{D}_{A}		D_{R}		
AB	X :	= 0	X	= 1	X = 0	X = 1	X = 0	X = 1
00	0	0			0	0	0	1
01	1	1	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	1	1	0	1	1
11	0	0	1 0	0	0	1	0	0
10	1	1	0	1	1	0	1	1

K-Map simplification

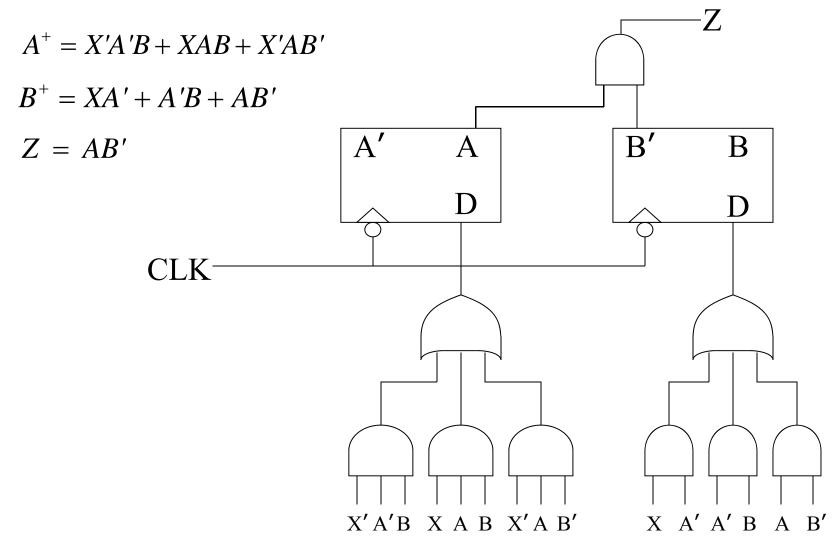
$$\begin{array}{c|cccc}
 & X & 0 & 1 \\
 & 00 & 0 & 0 \\
 & 01 & 1 & 0 \\
 & 11 & 0 & 1 \\
 & 10 & 1 & 0
\end{array}$$

$$Z = AB'$$

$$A^+ = D_A = X'A'B + XAB + X'AB'$$

$$B^+ = D_B = XA' + A'B + AB'$$

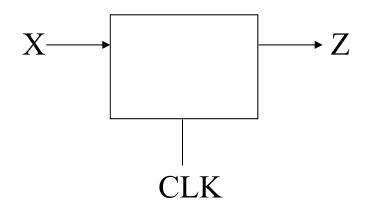
Circuit realization



More complex Design Problems (1/11)

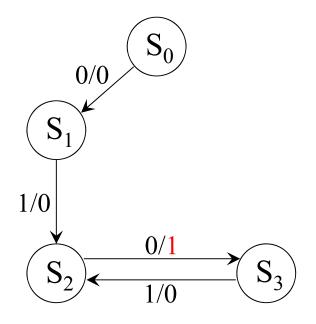
Mealy Machine

Sequence dectector



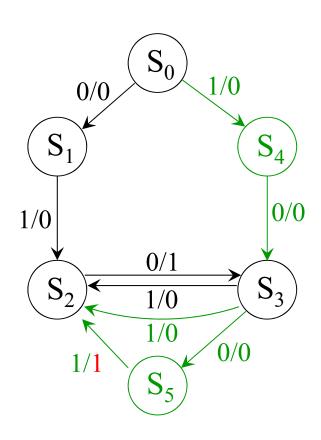
→ Z Z=1 when detects X=010 or 1001, otherwise Z=0

Partial state graph construction for 010



	Sequence			
State	received			
So	reset			
S_1	0			
S_2	01			
S_3	010			

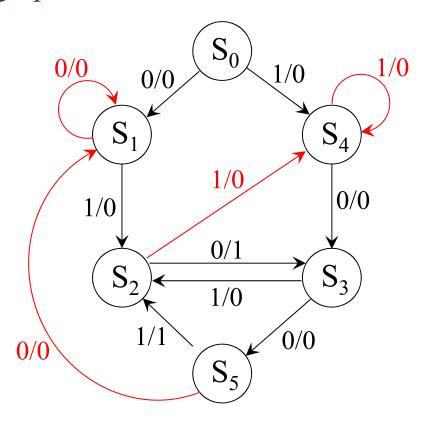
Partial state graph construction for 1001



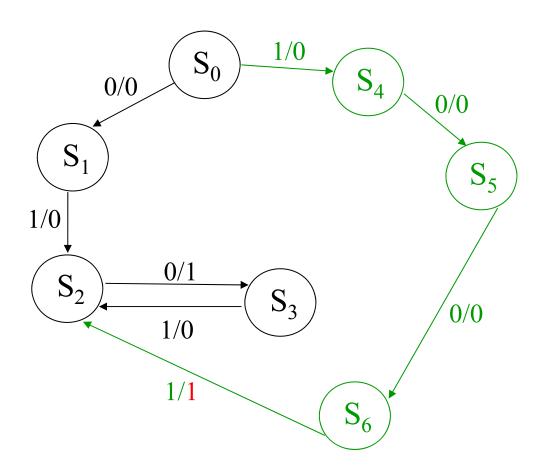
Sequence

State	received
S_0	reset
S_1	0
S_2	01
S_3	010 or 10
S_4	1
S_5	100

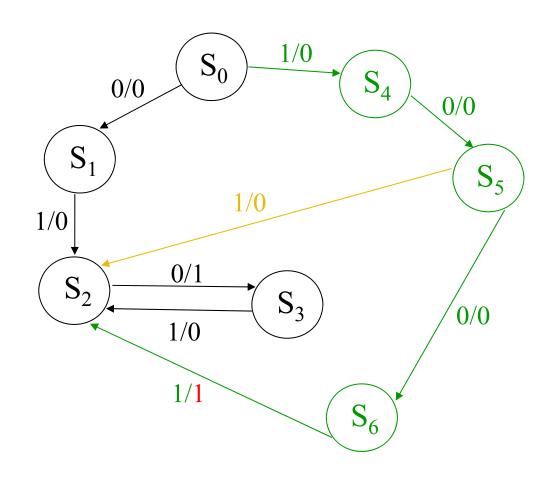
Complete state graph



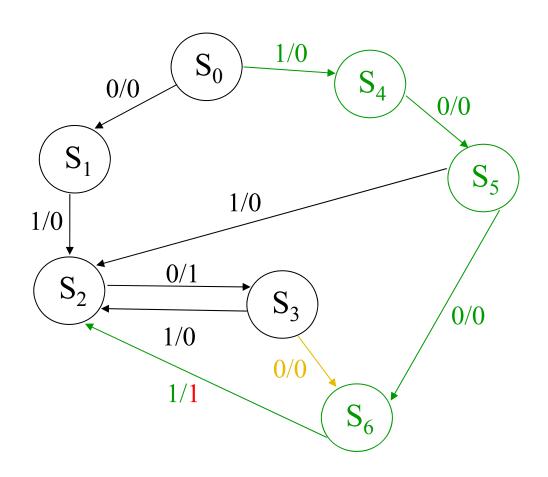
If state graph



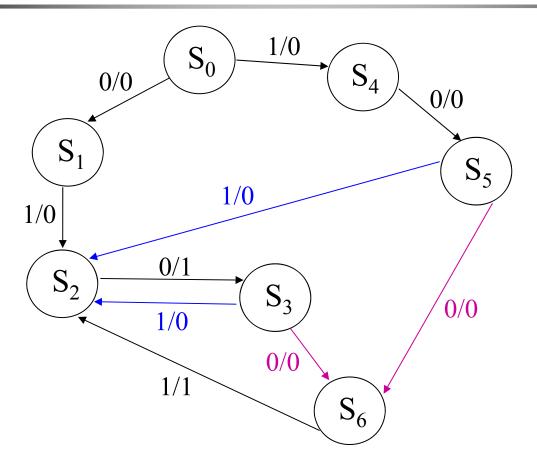
Then $S_5 \rightarrow S_2$



Then $S_3 \rightarrow S_6$



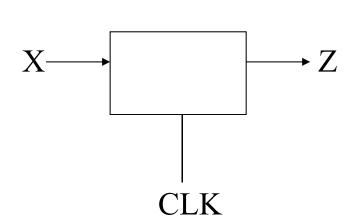
More complex Design Problems (8/11)



 S_3 , S_5 have the same next states (S_2, S_6) and output 0 under the same input $\Rightarrow S_3 \equiv S_5$ (equivalent)

More complex Design Problems (9/11)

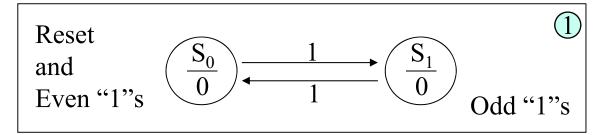
Moore Machine

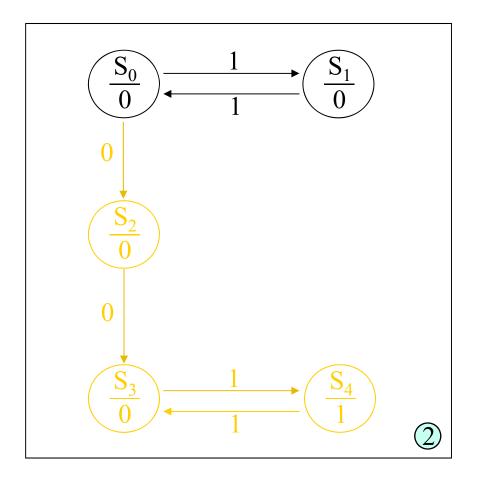


Z = 1 if total number of "1"

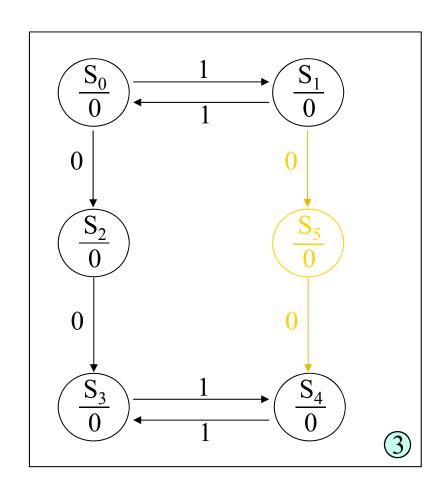
→ Z received is "odd" and at least 2 consecutive "0" received, otherwise, Z = 0

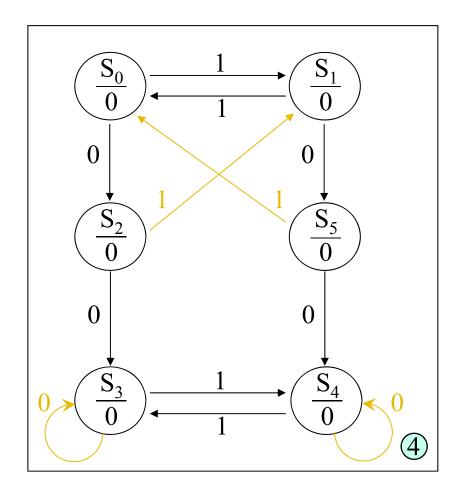
$$X = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ Z = (0) & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \end{bmatrix}$$





More complex Design Problems (11/11)



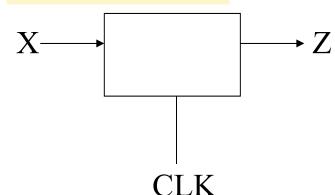


Guidelines for Construction of State Graphs (1/6)

- 1.Understand the problem by constructing sample sequences
- 2.Determine the reset state
- 3. Construct a partial graph to obtain "1" output
- 4. Construct remaining partial graphs to obtain "1" output
- 5. When setting up a new state, see whether it can go to an existing state
- 6. Complete the graph (check all input combinations !!)

Guidelines for Construction of State Graphs (2/6)

Mealy Machine

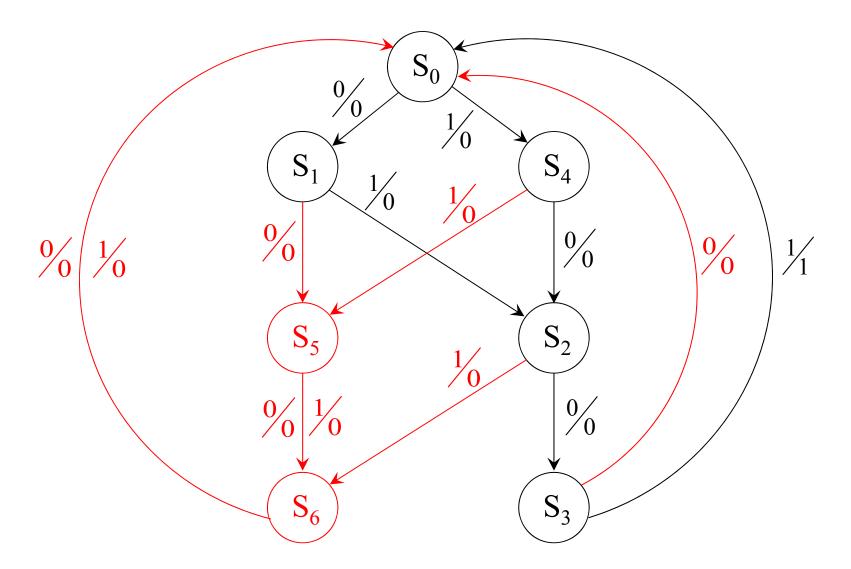


→ Z Check 4 consecutive inputs as a group, then reset Z= 1 when X = 0101 or 1001

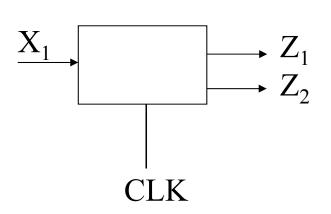
$$X = 0 \quad 1 \quad 0 \quad 1 \mid 0 \quad 0 \quad 1 \quad 0 \mid 1 \quad 0 \quad 0 \quad 1 \mid 0 \quad 1 \quad 0 \quad 0$$
 $Z = 0 \quad 0 \quad 0 \quad 1 \mid 0 \quad 0$

Hint: Z=1 if either 01 or 10 followed by 01

Guidelines for Construction of State Graphs (3/6)

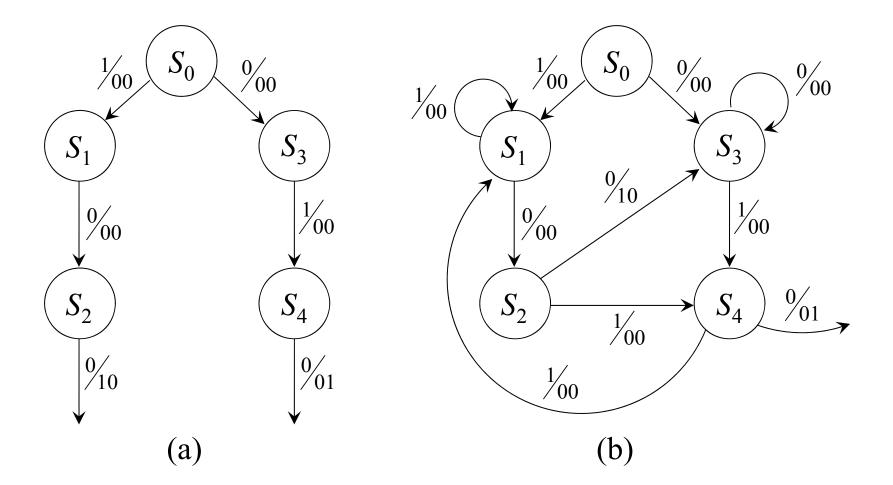


Mealy Machine

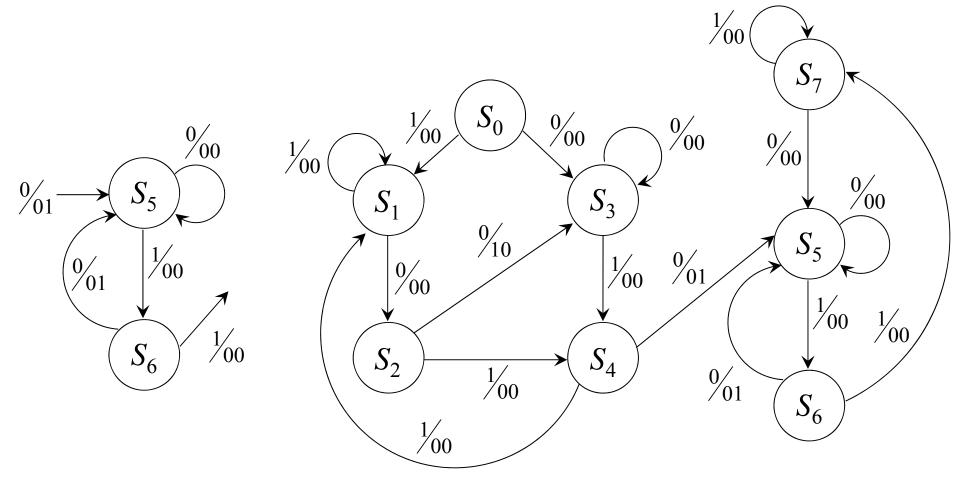


 $Z_1=1$ if sequence 100 occurs & 010 has not occurred $Z_2=1$ if sequence 010 occurs, Note once a $Z_2=1$, then $Z_1=1$ will never occur

Guidelines for Construction of State Graphs (5/6)



Guidelines for Construction of State Graphs (6/6)

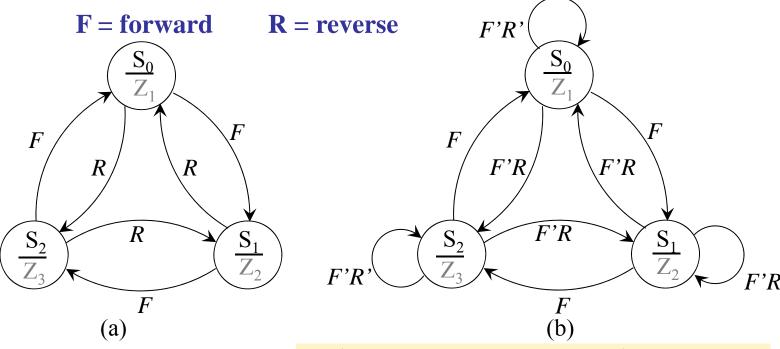


(a) Partial graph for 010

(b) Complete state graph

Alphanumeric State Graph Notation (1/2)

- When a sequential circuit has several inputs
 - Label the state graph arcs with alphanumeric input variable



PS	NS						Output		
	FR =	00	01	10	11	Z_1	Z_2	Z_3	
$\overline{S_0}$		S_0	S_2	S_1	S_1	1	0	0	
S_1		S_1	S_0	S_2	S_2	0	1	0	
S_2		S_2	S_1	S_0	S_0	0	0	1	

Alphanumeric State Graph Notation (2/2)

F'R'

 \boldsymbol{F}

- Property of the completely specified state graph
 - OR together all input labels on arcs emanating from a state, the result can be reduced to 1

$$F + F'R + F'R' = F + F' = 1$$

 AND together any pair of input labels on arcs emanating from a state, the result can be reduced to 0

$$F \cdot F'R = 0$$
, $F \cdot F'R' = 0$, $F'R \cdot F'R' = 0$

- For large sequential circuits (4 inputs, 4 outputs)
 - $-X_1X_4'/Z_2Z_3$ 1--0/0110
 - $-Z_1$ for any combination of input values, the indicated state will occur and output $Z_1=1$